If it's not what You are looking for type in the equation solver your own equation and let us solve it.
31j^2+12j=0
a = 31; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·31·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*31}=\frac{-24}{62} =-12/31 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*31}=\frac{0}{62} =0 $
| 11c-9c+3c+4c=18 | | 12x=15(10-x) | | -7/9=v-6 | | 5b-b=-6 | | p÷8=0.8 | | (3)(5^x^-^1)=75 | | |2u+12|=-8 | | 12(28+2x)=5(xí2) | | 20t^2-3t=20 | | 20g-16g=12 | | b-36-45=90 | | k8+7=19 | | 15x=12(10-x) | | 18d-11d=7 | | 247-c= | | (3)(5^x-1)=75 | | 9u-8u=12 | | 3(i+5)=6 | | 7x-2+3x=46 | | (x)=1/2+1/5 | | -2x+38=4(x+2) | | F(x)=1/2+1/5 | | (10x)+52=122 | | 5(x+3.3)=20.5 | | 2s^2-13+15=0 | | j÷2.9=4 | | 3d+9=12 | | -8x-8=-32 | | 5k^2+38k=0 | | 1432=10^x | | 2y-14=10–4y | | 6.43=6.15+c |